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In this article the Taylor-expansion method is introduced by which
Monte Carlo {(MC} simulations in the canonical ensemble can be
speeded up significantly. Substantial gains in computational speed
of 20-40% over conventional implementations of the MC technique
are obtained over a wide range of densities in homogeneous bulk
phases. The basic philosophy behind the Taylor-expansion method
is a division of the neighborhood of each atom {or molecule} into
three different spatial zones. Interactions between atoms belonging
to each zone are treated at different levels of computational sophisti-
cation. For example, only interactions between atoms belonging to
the primary zone immediately surrounding an atom are treated
explicitly before and after displacement. The change in the configu-
rational energy contribution from secondary-zone interactions is
obtained from the first-order term of a Taylor expansion of the
configurational energy in terms of the displacement vector d. Inter-
actions with atoms in the tertiary zone adjacent to the secondary
zone are neglected throughout. The Taylor-expansion method is
not restricted to the canonical ensemble but may be employed
to enhance computational efficiency of MC simulations in other
ensembles as well. This is demonstrated for grand canonical en-
semble MC simulations of an inhomogeneous fluid which can be
performed essentially on a modern personal computer. o 1995
Academic Press, Inc.

1. INTRODUCTION

Basic problems in the (equilibrium} statistical—physical de-
scription of condensed matter concern the computation of mac-
roscopic properties like internal energy U, pressure P, or magne-
tization M in terms of configurations of individual molecules
[1—4]. Analytically this is a formidable task even if microscopi-
cally small representations of the system of interest are consid-
ered because the potential field acting on each molecule (due
to interactions with others and, in general, external fields) is a
complicated function of the spatial positions of all N molecules.
Thus, additional simplifying and generally uncontrollable as-
sumptions have to be introduced to compute any of the macro-
scopic quantities of interest [4].

However, with the advent of large scale computers some
forty years ago the basic problem in statistical physics became
tractable at least numerically by means of computer simulations.
In a computer simulation the evolution of a microscopically
small sample of the macroscopic system is determined by com-

puting trajectories of each molecule for a microscopically small
pericd of observation. An advantage of computer simulations
is their treatment of the microscopic sample in essentially a
first principles fashion; the only significant assumption concerns
the choice of an interaction potential [5].

Due to the power of modern supercomputers (both vector
and parallel) which can literally handle hundreds of millions
of floating point operations (i.c., divisions, multiplications, etc.)
per second, computer simulations are nowadays perceived as
*‘a third branch complementary to the ... two traditional ap-
proaches’’ [6]: theory and experiment. In fact, computer simula-
tions may be viewed as ‘‘virtual experiments’’ given the com-
plexity of systems and physical phenomena currently
investigated which range from, say, systems of geophysical
importance [7] to interfacial phenomena [8].

A vparticular potent simulation technique is the so-called
Monte Cario (MC) [9] method by which properties of classical
[10] and quantum systems [11] can be computed. However,
this article is exclusively concerned with MC simulations of
the former. A particular advantage of the MC method is its
applicability to virtually any non-trivial statistical—physical en-
semble (see Table I in [3, 12, 13]). The preference given to a
specific ensemble is usually a matter of computational conve-
nience. For example, diffusion-controlled processes may be
studied under conditions where N molecules are confined to
a fixed volume V at constant temperature T, thus suggesting
the canonical ensemble. In inhomogeneous systems or investi-
gations of phase equilibria, on the other hand, the grand
canonical ensemble may be more appropriate in which
(besides V and T') the chemical potential w is a thermodynamic
state variable.

In the context of many-particle systemns (which are of concern
here) the MC method generates numerically a sequence (i.e.,
a chain) of microstates (subject to constraints posed by the
set of thermodynamic state variables) which (in the limit of
sufficiently long chains} are distributed according to the proba-
bility density of the chosen ensemble. Generation of the chain
is effected by a random walk in the (hyper)space of microstates
known as Markov process. Based upon the theory of Markov
processes [14] a new microstate » is realized at random from
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TABLE I

Technical Details of Canonical and Grand Canonical Ensemble
Monte Carlo Simulations Employing the Taylor-Expansion Method

Ensemble for homogeneous bulk fluid Canonical
Number of atoms 200
Starting configuration random
Number of equilibration steps 1.5 X 1P
Number of steps between subsequent IN

averages
Total number of MC steps 7.5 X WP-10°

Radius of primary zone sphere r,

Thickness of secondary zone shell
Ar=1r —n

Radius of neighbor list ry

Potential cutoff (pressures and energies) 7.

1.5 o (see Section 11.3)
0.7 o (sphere, see text}

2.5 ¢ (sphere, see text)
3.0 o (sphere, see text)

Ensembie for inhomogeneous fluid Grand canonical

Starting configuration random

Number of equlibration steps 35 X 108

Number of steps between subsequent 200
averages

Total number of MC steps 4,0 x 10°

Radius of primary zone sphere ry 1.8 &

Thickness of secondary zone shell 0.7 & (cylinder, see text)
Ar=n—n
Radius of ncighbor list ry

Potential cotoff (pressures and energies) r,

2.7 o (cylinder, see text)
3.5 o {cylinder, see tex)

its immediate predecessor m with a relative probability 11 =
1.1, where f, and f,, are the absolute probability densities associ-
ated with m and n [10].

Several algorithms have been suggested in the past by which
numerical realizations of Markov chains (henceforth referred
to as Markov chains for simplicity) can be generated in MC
simulations [10, 15, 16]. Presumably the most frequently em-
ployed algorithm in the context of classical (non-lattice) sys-
tems has been suggested in the seminal paper by Metropolis
et al. [16]. Although the “‘classical’” Metropolis algorithm was
designed for the canonical ensemble, hybrid schemes for many
other ensembles have been devised thereafter [12, 13, 17, 18].

As will be detailed below, the Metropolis algorithm (as well
as other aigorithms) involves in essence a computation of the
change in configurational energy A®,, = &, — P, associated
with the transition #m — n which is the most time-consuming
step in a MC simulation. It is the purpose of this article to
describe a technique by which the computation of A®,, can
be speeded up significantly. The heart of the new method is a
division of the neighborhood of each atom or molecule into
primary, secondary, and tertiary zones. The respective energy
contributions ADL AD2  and ADE are treated at different lev-
els of sophistication to achieve the desired savings of com-
puter time.

Application of the new method to simulations in the canonical
ensemble will be discussed subsequently in Section II. How-
ever, extension to other ensembles is straightforward. This is
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demenstrated in Section IIT for grand canonical ensemble MC
simulations of an inhomogeneous model system currently em-
ployed in investigations of boundary lubrication phenomena
[19]. 1t is shown in Section III that with the new MC method
relevant research can be done essentially on a modern persenal
computer. However, the ideas outlined here are in no way
restricted to this class of computers. In fact, vectorized and/
or parallelized MC programs will equally benefit from the
programming strategies discussed in this paper.

II. TAYLOR-EXPANSION MONTE CARLQ SIMULATION
IN THE CANONICAL ENSEMBLE

I1.1. The Concept of Conventional Monte Carlo Simulations
In the canonical ensemble, where a thermodynamic state 1s
uniquely determined by specifying &, V, and T [1-3] ensemble
averages {0), can be expressed in the classical limit as
[+ OG") expi— (")) de*
(0) =
[ expl—B0e)) dr”

)
= [ W OO NV, T dr®

where 8 = (k;T) ™' (kg Boltzmann’s constant), r¥ is an abbrevia-
tion for the set {r(, ry, ..., ry} ® is the configurational energy
and O(r") is a microscopic representation of the macroscopic
quantity of interest. For instance, if O(r¥) = ®(r"), {(0). = U
where [/ is the mean configurational energy. Equation (1) aiso
defines the probability density (of microstates) in the canonical
ensemble, f(r"; N, V, T). Since the integrals in Eq. (1} are highly
multidimensional even for a microscopically small system {and
next to impossible to solve analytically without introducing
additional assumptions) the MC method can be employed to
solve Eq. (1) numerically. Therefore, Eq. (1) is discretized in
configuration space as

e O exp[—BO(Y)]
{0} = lim . .
VoM Dy expl—BP(EN)]

2

Equation (2) is still not immediately amenable to numerical
evaluation because f(r"; N, V, T} is an extremely narrow and
sharply peaked function in configuration hyperspace [1-3].
However, if configurations r are generated with a probability
given by f(r™; N, V, T), that is according to their importance,
Eq. (2) can be rewritten as

U [T
(0).= Jim 32 > 0(em). 8

ax

where the prime on the summation sign refers to a chain of
configurations generated according to their absolute probability
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of occurrence given by f(r¥; N, V, T}, This prescription is
known as importance sampling [5, 10]. Unfortunately, f(r"; N,
V, T') is unknown because of the unknown denominator in Eq.
(1) and Eq. (3) cannot be solved without further ado. However,
if the chain of configurations is generated by a Markov process
it can be shown that only relative probabilities f/f, =
exp] —B{Pay — DD} = exp[-B AD,,] are required to
generate a new configuration from the immediately preceding
one 5o that in a sufficiently long chain a particular configuration
occurs with the desired probability proportional to f(r"; N, V,
T) {5, 6, 10, 14]. Thus, a realization of the transition m —» n
depends only on the associated change in configurational energy
Ad,, which is immediately computationally accessible,

One numerical recipe by which a Markov chain of configura-
tions can be generated is the Metropolis algorithm [5, 16].
Consider for simplicity an atomic system. Then the conven-
tional implementation of the ‘‘classical’ Metropolis algorithm
proceeds by picking sequentially (or at random) one of the N
atoms, say § and computing its configurational energy

N
(I)(rf.m) = 2 ‘p(rij.m )9 (4)

where ¢ is the (pairwise additive) interaction potential, r;;,, =
| X = T} | and r, , denotes the position of atom / in configuration
m. Equation (4) applies to a homogeneous bulk phase but can
be extended easily to inhomogeneous phases in the presence
of external fields (see Section II1.3). The atom is next displaced
by a small amount via

rp=F.td(1-286=r,+d, (5
where 1 = (1, 1, 1) and £ is a vector whose three components
are pseudo-random numbers distributed uniformly on the inter-
val [0, 1]. Equation (5) defines the displacement vector d.
|d| < o because d, is usually a small fraction of the atomic
““diameter’’ o (see Table IV) to allow roughly 60-70% of
all attempted displacements to be accepted according to the
Metropolis criterion

AD,, =0

(6
Ad,, >0 :

1 s
Hl = {
exp[—8 AD,,];

where @(r;,) is computed via an expression anatogous to Eg. (4)
(replacing, however, r;,, by r;,.). If the configurational energy is
lowered by moving i, the displacement is immediately accepted,
if A®,, > 0 the transition m — n is accepted with the desired
probability if exp[—f8 A®,,] > £ where £ is another pseudo-
random number (on the interval [0, 1] [5, 10]).

The 60-70% acceptance rate which favors smaller displace-
ments is not a general condition on MC simulations. This ap-
plies to both the conventional and the Taylor-expansion method
to be introduced below (see Section 1L.3, Table 1V). In fact,
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there is considerable freedom in the adjustment of acceptance
rates (i.e., the choice of d,). In general, results obtained in MC
can be expected to be reliable if d, is chosen such that roughly
30-80% of all displacement attempts succeed. If 4, is too large
or too small, on the other hand, then the system may (in a
given number of MC steps) evolve insufficiently in configura-
tion space because too few or too many displacement attempts
are accepted. Under these circumstances the distribution of
microstates cannot be expected to comply with f(r¥; N, V, T)
and {O), will be in error.

M.2. Computation of the Change in Configurational Energy

From a numerical perspective the computer time required
by a MC simulation is determined by two factors, namely the
value of M, (usually of the order of 10°~107) and the upper
summation limit in Eq. (4). The precise value of M, depends
largely on the precision sought for the quantity of prime interest
{0).. Depending on the physical nature of {0}, various tech-
niques have been designed to minimize M,,,. However, none
of these is of any concern here and the interested reader is
referred to Chaps. 4 and 6 in [5].

On the contrary, this paper focusses on minimizing the num-
ber of terms to be computed explicitly in evaluating Eq. (4)
before and after { is displaced. Assuming ¢ to be short-range
(e.g., Lennard—Jones-type potentials which are still emploved
in the overwhelming number of MC simulations of classical
fluids), three different interaction zones can be defined to
achieve this goal. ® can then be expressed accordingly as a
sum of three terms, namely

d=d + D, + Dy, 7

where the arguments r; , and r; , have been dropped temporarily.
@, is the configurational energy resulting from interactions
between atom ¢ and N, neighboring atoms j9#) both located
in a primary zone immediately surrounding i. Similarly, d,
refers to interactions between / and N, atoms j(7) in a second-
ary zone adjacent to the primary zone and, last but not least,
®; refers to interactions between i and the remaining N, =
N — N, — N, atoms j¥{(J) in an outermost tertiary zone which
ends at the (virtual) boundaries of the simulation cell if periodic
boundary conditions are employed [5].

Savings of computer time depend on the size of the three
zones (i.e., the values of N, N,, and N;} and different levels
of sophistication with which the three terms on the r.h.s. of
Eq. (7) can be treated. Due to the symmetry of homogeneous
bulk phases (cf. Section HI.3} it seems natural to associate with
the primary zone a sphere of radius », centered on r;,,. The
secondary zone is taken to be a spherical shell of thickness
Ar=r, = r. If r, is sufficiently large one may assume

AD; = Py(r;,) — Du(r;,) =0 (8)
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because |d| is small compared with typical distances r; Cofre-
sponding to the tertiary-zone interactions so that ¢ (which is
small for sufficiently large r;; anyway) depends only negligibly
on the change r;,, — r;, (see Eq. (5)). Thus, ¥, interactions
between { and j®Xi) are neglected entirely during the course of
the simulation. In the secondary zone

AD; = Dyr;,) — Dyfr;,) =0 9

is not negligible but still small enough to permit an expansion
of ®,(r,,) in a Taylor series

(I)Z(ri‘n) = q)z(ri:_m) -+ (@g‘) . d e

or; 10

truncated after the second term. Inserting Eq. (10) into Eq.
(9) yields

A@zw(:gz)-d. (11

i

The term 9P,/dr;,, has a simple physical interpretation. From
Eq. (4) it is immediately obvious that

M

6P, & dely
(Gr,‘m) ;Z' dryry E j AW ¥im)

i=1

(12)

where F, is the rotal force exerted on atom i in the initial
configuration m by the N, atoms in the secondary zone. For the
primary zone no simplifying assumption can be made because ¢
may depend strongly on |d|. Thus,

L}

A®y = (r;,) — By(r,,) = ; [(r,) — @yl (13)

needs to be evaluated in both configurations % and r¥ but in-
volves only a small number of N; terms if r can be kept
sufficiently small. Using Egs. (8), (11), and (13) A®d,,, can then
be written as

Ad,, = ®y(r;,;) — By(rin) — Falr,) - d. (4
It is immediately obvious that Eq. (14) wili lead to a consider-
able reduction of the computational effort compared with the
standard textbook evaluation of A®,,, [5]. As Allen and Tildes-
ley point out ‘“‘the change in potential energy is calculated by
computing the energy of atom i with all the other atoms before
and after the move™ (see p. 119 in [5], italics by the author).
From the discussion in Section II.1 it then follows that the
computation of A®,, involves 2N terms (see Eq. (4) where (at
constant density N/V) N depends linearly on V). On the con-
trary, Eq. (14) requires in principle an evaluation of 2§, +
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N, << Nsuch terms: N, and N; contributions need to be computed
before atom i is moved but only N, contributions need to be
considered explicitly after atom i is displaced by d.

It is noteworthy that in a brute force implementation of both
methods N pair distances #; have to be computed before atom
i is displaced. In the Taylor-expansion method this is required
because the assignment of each atom j to primary, secondary
or tertiary zone is based upon r,;. Since r, is small it is sensible
to reduce the number of pair distances beforehand by means
of the standard neighbor list technique first suggested by Verlet
[20]. Its application to MC is described in detail by Allen and
Tildesley (see p. 147 in [5]). In principle, atom j is considered
to be a neighbor of { if it is located within a cutoff solid (usually
a sphere of radius ry > r; in a homogeneous bulk phase)
centered on i. Thus, 7 has Ny(i) neighbors where N > Ny(i) >
N, + N;.

In the new Tayler-expansion MC computation of A®,,, can
finally be split into five elementary steps. Before atom i is dis-
placed

* Ny(i) pair distances r;;,, are computed (if size and shape
of the cutoff solid are the same this number is identical to the
one in the conventional method).

* Based upon ry, a distinction is made between primary
zone interactions r{}),, secondary zone interaction rf), and ter-
tiary zone interactions r{j),.

* @\(r;,) and Fyr;,) are computed via Eqs. (4) and (12).

*» A neighbor list for the N, atoms belonging to the primary
zone is constructed based upon the criterion ri}, = ry. This list
is a one-dimensional integer array which contains in consecu-
tive storage locations N, addresses of neighboring atoms j'(i).

After atom i is displaced according to Eq. (5)

+ the previously constructed primary zone neighbor list is
used to find the N, relevant atoms j'(i) to recompute r{}} and
to obtain ®,(r;,) (Note that the conventional method would
still have to recompute the much larger number of Ny(i) pair
distances 7, ).

While the primary zone neighbor list is reconstructed for
each atom i at every MC step, the full neighbor list needs to
be updated only in certain intervals. A diffusion criterion similar
to the one proposed by Fincham and Ralston [21] is employed in
the updating procedure. Whenever an atomn diffuses a distance
A = ry — r, away from its original position at the previous
update its neighborhood is reidentified and its list entry recon-
structed. It is then checked which atom j(i) is a new neighbor
of i and its respective neighborhood information is updated, too.

I1.3. Results for a Homogeneous Bulk Phase

To demonstrate the correctness of the Taylor-expansion MC
method in the canonical ensemble the mean configurational
energy in a homogeneous bulk phase
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TABLE 11

Results of Taylor-Expansion (TE) and Conventional (Conv.) Canonical Ensemble Monte Carlo Simulations of Homogeneous Lennard—
Jones (12, 6) Bulk Fluids at Various Thermodynamic States

—~U*IN P*
This work This work
State p* T* TE Conv. Ref. [24] TE Conv. Ref. (24]
l 08 2.4 4.283 + 0.016 4270 £ 0018 4.281 7.903 + 0.073 7.900 = 0.063 7.900
2 0.7 274 3915 £ 0.015 3.907 = 0.014 3.902 4.992 + 0,046 5.048 £ 0.045 5.065
3 0.55 274 3.222 = (0.016 3202 = 0,013 3.207 2405 + 0.022 2440 + 0.023 2471
4 0.4 2,74 2,366 = 0.018 2.360 + 0,019 2.371 1.299 + 0.016 1.314 + 0,018 1.314
5 0.7 1.35 4,608 = 0.018 4.661 ~ 0019 4.684 1.086 = 0.018 1,122 = 0.017 1.102
6 0.5 1.35 3.386 = 0.019 3.392 = 0.020 3372 0.194 = 0.013 0.180 = 0.012 0.205
7 0.4 1.35 2.740 * 0.021 2757 = 0.020 2.747 0.145 * 0.013 0.159 = 0014 0.147

Note. Specified by density p* = pe? = NYV (N = 200) and temperature T* = ks T/e (kg Boltzmanns constant; N, number of atoms; V, volume). Configurational
energy U* = U/fg and pressure P* = Pog¥le are given in reduced units (indicated by an asterisk) £ and o see Section I1.3. Error estimates are obtained in a

series of independent runs for each state point (see text).

U= <2 D <p<m>> + U= (@)

(15a)
=l =i
and the compressibility factor (i.e. pressure P) [22]
Nt N
P B < S N\ dqo> BP.
—=1- = )+ — 15b
p 3N ; ng rjdfi,-' P (150
are computed where
o\ 12 o\
elr;) = 48[(—) -\ (16)
7ij i

is the Lennard—Jones (12, 6) potential. The well depth k' =
120 K and the atomic ‘‘diameter’” o = 3.4 X 107 m are
chosen to model approximately (fluid) argon. Angular brackets
indicate an average over the Markov chain. Since averages
are taken after an initia] equilibration period and subsequent
averaging evenls are separaled by relatively large intervals of
a fixed number of MC steps (see Table I) no neighbor list is
employed to evaluate Eqs. (15a, 15b). However, a potential
cutoff criterion is employed so that only NN, — 1}/2 terms
corresponding to r; < r(r, > ry, N, > N{i), r, potential cutoff
radius, see Table I) are computed explicitly. Thus, corrections
U, and P, corresponding to the neglected range of interactions
F. = ry = % have to be added at the end of the simulation
which can be computed analytically under the assumption of
a random distribution of atoms j around i for r; = r, (see Egs.
(4-1) in [23] for explicit expressions).

Several thermodynamic states previously investigated by
Hansen and Verlet [24] are considered in Table II for compari-
son. Regardless of temperature and density the excess internal

energies computed by Taylor-expansion MC are in excellent
agreement with Hansen and Verlet’s results and data obtained
here by the conventional method which are also included in
Table II. Error estimates are obtained in a series of ten indepen-
dent runs per thermodynamic state each starting from a random
configuration but with a different seed for the pseudo-random
number generator. Deviations between the three sets of results
are smaller than 1% and no particular systematic tendency can
be detected: For example, U/N for states 1, 2, 3, and 6 is
slightly larger than the corresponding value from [24], while
a slightly smaller value is observed for states 4, 5, and 7.
The corresponding pressures computed by the Taylor-expan-
sion method deviate by less than 3% from the results of [24]
as far as states 1-5 are concerned. P usually provides a more
crucial test of accuracy in computer simulations. It is well
known that P is generally more sensitive to numerical *‘inade-
quacies” (viz. coding errors, insufficient averaging etc.) and
that accurate estimates are much harder to obtain (see Sect. 3-1
in [22]). A maximum deviation of 3% is yet to be expected
under the conditions listed in Table [. However, a somewhat
larger discrepancy of 5% (Taylor-expansion method) and 12%
(conventional method) is observed for stare 6. This is not sur-
prising because P is very close to zero for these states. From
Egs. (15b) and {16} it is apparent that P* == ( (see Table II
for a definition of reduced units indicated henceforth by *) is
obtained if all atoms are separated by r; = ry, where r¥, =
ol 0 = 218 is the interatomic separation where @(r;} assumes
its minimum and de/dr; changes sign. Due to thermal fluctua-
tions P* = ( resulis from summing (rather large) positive
and negative terms d¢/dr; which nearly cancel. Clearly, these
conditions are numericaily unfavourable and a much larger
error for P at state 6 is inevitable. This is reflected by the
statistical error associated with P: it turns out to be less than
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TABLE III

The Dependence of Configurational Energy U/* and
Pressure P* on Primary (r) and Secondary Zone
Potential cutoff () (in Units of o) Employed in the
Taylor-Expansien Monte Carlo Method at State Point
1 (See Table ID

ri rt ~U*IN P*

15 2.2 4.280 7.874
1.5 2.4 4277 7.882
1.5 26 4.273 7.909
15 28 4.284 7.832
L5 2.9 4.276 7.885
22 2.9 4.276 7.887

2% for states 1-5 and amounts to 7-9% for states 6 and 7
respectively. In view of this the almost perfect agreement be-
tween Hansen and Verlet’s result for P and the one obtained
here at state point 7 must be regarded somewhat fortuitous. If,
on the other hand, P is reasonably large (states 1-5) partial
cancellation of positive and negative terms is not a problem
and the obtained numbers are much more reliable. The reader
should note that the numerical problems just discussed are riot
characteristic of the MC method in general (conventional vs
Taylor-expansion) but rather caused by the form of ¢(r;;). They
are, therefore, expected to affect Hansen and Verlet’s results
the same way. In the absence of error estimates for the results
of [24] it cannot be decided whether the slight deviations from
them in Table II are significant. It is, however, emphasized
that results obtained by the Taylor-expansion method and the
conventional one in the present paper agree within mutual error
bars regardless of the thermodynamic state considered.
While this agreement already indicates the correctness of the
Taylor-expansion method, additional tests seem worthwhile.
For instance, the relatively small value of r, (see Table T) may
give rise to errors. At ri’ = 2.2 ¢(r;;) has decayed only to 3.5%
of its minimum value, Reliability of the Taylor-expansion re-
sults presented in Table 11 is therefore investigated by varying
r, over the range 2.2 = r¥ = 2.9. Note that at r5 = 2.9 @(r;;)
has decayed by roughly a factor of five compared with r¥ =
2.2. Hence interactions between any pair of atoms separated
by r¥ = 2.9 are truly negligible. However, the results compiled
in Table 11l indicate that, in fact, the Taylor-expansion method
yields already reliable results at the smaller cutoff ¥ = 2.2
(based on error estimates in Table II for state 1). This observa-
tion is independent of the thermodynamic state considered.
Another possible source of error is associated with the present
choice of r¥ = 1.5. The value of », obviously determines the
contribution from interactions between atom { and its secondary-
zone neighbors to A®,, in Eq. (14). The smaller r, the larger the
possible error associated with truncating the Taylor expansion
in Eq. (10) after the linear term. The influence of r, is therefore
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investigated for a representative case by enlarging its value from
1.5 to 2.2 while maintaining r¥ = 2.9. Note that @(r{ = 1.5)/
@(rf = 2.2) = 0.1. The entry in Table III shows no evidence of
a dependence of the Taylor-expansion results on r,.

Simlar to r, the value of d, determines the accuracy of the
approximation Eq. (10) because the magnitude of F; - d is
controlled by it. To test the influence of d,, results obtained by
the Taylor-expansicn method are compared with those from the
conventicnal method in Table IV. Also listed are the respective
acceptance ratés. At state point 1 the acceptance rate determined
for the Taylor-expansion simulation begins to differ from that
characteristic of the conventional method for d* > 0.19,
whereas a somewhat larger value of (.24 is determined for the
lower-density state 4. Thus, the Taylor-expansion methoed can
be expected to break down if 4, exceeds the values given above.
Note that at staté point | the acceptance rate at the breakdown
threshold is already diiité small so that the corresponding d, is
not véry likely to be employed in an actual simulation for the
reasons given at the end of Section IL. 1. It seems also noteworthy
that even at the breakdowh threshold the U/N and P obtained
by the two methods still agree within error bars. Thus, truncation
errors introduced by Eg. (10) are apparently rather small even
if d, is varied ovet a fairly wide range.
keeps in mind that F, in Eq. (12) reflects the local curvature
of the configurational energy Aypersurface. Although the force
acting on the moved atom { due to any one of the remaining
(M — 1) secondary atoms j may be substantial, F, is the resui-
tant of alt (N, — 1) such pairwise interactions. The total force
on the moved atom due to secondary atoms is sufficiently small
that the secondary contribution to the configurational energy
shift can be reliably represented by a Taylor seties truncated
after the linear term. In other words, the predominant micro-
states are those for which the secondary atoms are so disposed
spatially that the net force they exert on the moved atom is
sufficiently small to render the Taylor series representation
reliable. This is a key element of the new method.

The insensitivity of the Taylor-expansion method o varia-
tions of 4, within reasonable limits also indicates that the con-
figurational energy hypersurface must be rather smooth which
is expected for a system at thermodynamic equilibrium. This
may also be concluded from the distribution of configurational
energy P(®) which is a narrow gaussian provided configura-
tional energy fluctuations are sufficiently small [1]. P(D) also
reflects the distribution of microstates in configuration space.
Thus, a comparison of P(®) computed by the Tay]or-expahsiorl
method (under conditions listed in Table I) with the one ob-
tained in a conventional MC simulation provides a further
consistency test. The agreement between the two distributions
in Fig. 1 reveals that the limiting distribution of microstates in
configuration space generated by the Taylor-expansion method
agrees with the one generated by the conventional method and
therefore with f(¥; N, V, T) (see Eq. (1)). Hence, in view of
the various comparisons presented in this section it is concluded
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TABLE IV

The Dependence of the Configurational Energy I/* and the Pressure P* on the Size of the
Displacement Parameter 4, {(sec Eq. (5))

Acceptance ratio —U*IN pPx
State d¥ TE Conv. TE Conv. TE Conv.
1 0.071 .703 0.701 4.287 4.288 7.845 7.937
1 0.076 0.683 0.687 4278 4.267 7.885 7.896
1 0.088 0.640 0.638 4,286 4.288 7.854 7.847
1 (.126 0.511 0516 4273 4.27¢ 7.920 7.922
1 0.18% 0.349 0.354 4.300 4.278 7.804 7.918
1 (0.252 (.238 0.246 4.345 4,282 7.600 7.845
4 0.079 0.854 0.853 2,373 2374 1.308 1.301
4 0.099 0.821 0.824 2371 2.369 1.287 1.297
4 0.119 0.781 0.791 2,366 2.358 1.286 1.305
4 0.159 0.724 0.721 2382 2.367 1.291 1.329
4 0.198 0.661 0.669 2.386 2.378 1.278 1.298
4 0.238 0.604 0.618 2.393 2.378 1.274 1.298

Note. The results are obtained in Taylor-expansion (TE) and conventional (Conv.) canonical ensemble Monte
Carlo simulations for a homogeneous Lennard—Jones {12, 6) bulk fluid. Two thermodynamic states specified in

Table II are considered.

that the Taylor-expansion method yields reliable results under
the conditions listed in Table 1.

1.4. CPU-Times

Under conditions specified in Table I CPU-times for the new
Taylor-expansion MC method are compared with those for
the conventional method in Table V. Both methods employ a
neighbor list technique briefly decribed in Section I1.2. Table
V reveals that the CPU-time is largely determined by density
but only slightly affected by temperature. This is evident from
Table V if one compares the ratio (f,,., — ts)/ e for state points
1 (0.366) and 4 (0.235) for which the density ratio is 2 whereas
the corresponding ratio of temperatures is 1. The corresponding

P(®")
%
é
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—--m“q':’c- | | . ) | .ud“’q-ro "
"1 -08 06 -04 02 0 02 04 06 08 1
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FIG. 1. The distribution of configurational energy P(®P) as a function of
the deviation of & from its ensemble average (@) for thermodynamic state
1 (sec Table II) obtained by Taylor-expansion (@) ((&*) = —4.287) and
conventional () ({@*) = —4.288) canonical ensemble Monte Carle simula-
tions.

values for states 2 {0.368) and 5 (0.359) are much closer. Here
the densities are the same but the temperature ratic is now 2.03,

The vanations in absolute CPU-times reflect different num-
bers of atoms involved in each step of the computation. In the
conventional method 2Ny pair distances r;; have to be computed
(before and after atom i is displaced). This is followed by an
evaluation of 2N, contributions to the configurational energies
@, and &, In the Taylor-expansion method one needs to com-
pute only Ny pair distances r,; before atom i is moved. With
these N, terms contributing to &, and N, terms contributing to

TABLE V
Comparison between CPU-Times per MC Step

Obtained by the Taylor-Expansion (z;;) and the
Conventional Technique (#.,,) in the Canonical Ensemble
(See Tex)
State tef 1070 s feomed 1070 5 (feom — HEM 2
1 2.644 3.611 0.366
2 2443 3.343 0.368
3 2.287 2.961 0.295
4 2.075 2.563 0.235
5 2409 3.273 0.359

Note. The CPU-times per Monte Carlo step are
measured on a personal computer (COMPAQ ProLinea
4/50) consisting of an INTEL-486 {50 MHz) processor
with mathematical coprocessor, For comparison only
interactions r; < r; (see Table I) are inciuded in the
conventional technique. Thermodynamic states see
Table II.
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TABLE VI

The Average Number of Atoms Belonging to Primary
{N() and Secondary {N,) Zones (See Table 1}

State N, N, Ny, d*
| 10.98 24.04 51.67 0.069
2 9.60 20.67 45.19 0.072
3 7.45 15.95 35.37 0.114
1 5.31 11.63 25.60 0.127
5 9.80 20.52 45.32 0,066
6 7.03 14.36 32.32 0.103
7 5.63 11.52 25.93 0.127

Note. Nyis the average number of atoms in the neighbor
list up to a radius ry around a reference atom (see Table
I). d* = d./o is the maximum displacement of an atom
during an MC step. See Table Il for a definition of
thermodynamic states.

F; are evaluated. After atom i is displaced only N, pair distances
coniributing to &, have to be recomputed where the relevant
atoms are identified via the primary zone neighbor list set up
before. However, regardless of the particular thermodynamic
state Table V shows that the Taylor-expansion method clearly
surpasses the conventional MC method in terms of computa-
tional efficiency.

However, it seems surprising that the ratio [2(Ny + N, +
NNy + 2N, + N;) which reflects the relative computational
effort required by both methods (and which should be propor-
tional in principle to the ratio (1., — )/t in Table V) is
roughly constant as density changes (see Table VI) whereas
(teomy — HeMime varies between 0.235 (state 4) and 0.366 (state
1). However, a careful analysis reveals that the variation of the
CPU-time ratio is caused by an increasing frequency of neigh-
bor list updates as density decreases. Thus, the fraction of the
total CPU-time consumed by the updates (which is the same
for both methods) also increases as p becomes smaller thereby
diminishing the “‘true”’ gain by the Taylor-expansion method
somewhat. However, from a practical perspective it seems more
sensible to compare both methods under operating conditions
one would encounter in practice rather than presenting an ana-
logue of the usual next-to-meaningless benchmark tests (which
are always carried out under unrealistically ideal conditions)
generally favered by the computer industry.

HI. TAYLOR-EXPANSION MONTE CARLO SIMULATION
IN THE GRAND CANONICAL ENSEMBLE

III.1. General Remarks

Diffusive steps which are the only event by which Markov
chains are generated in the canonical ensemble are part of
modified versions of the “‘classical’”’ Metropolis algorithm ap-
plied to various other ensembles. The Taylor-expansion method
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described in Section I can therefore be employed in MC simula-
tions for different ensembles as well, This will be demonstrated
below for the grand canonical ensemble where a remarkable
increase in computational efficiency can be achieved if the
Taylor-expansion method is used.

In the grand cancnical ensemble a thermodynamic state 1s
uniquely specified by {u, V, T} = const. [1-3]. Following
standard textbook analyses [1-3] one can show that the ana-
logue of Eq. {1) is given by (classical limit!)

(0)e

_ Zyeo AN exp(BuN) J o0 O0) expl—BP(r)] dr
Zyeo (A MIN1 exp(BuN) [, exp[—BB(r")] dr

-> f O V. T) dr )

which defines the probability density f(rY®; u, V, T) in the
grand canonical ensemble. A = (h%/278m)"* (h Planck’s con-
stant,  atomic mass) is the thermal de Broglie wavelength.

A Markov chain of configurations is generated by a modified
version of the ‘“‘classical’” Metropolis algorithm. The modified
Metropolis algorithm proceeds as a pair of two steps where
again the realization of each step depends only on the ratio fi/
Ji for old (k) and new trial configuration (1). In the first, purely
diffusive step NV is kept fixed and an atom is displaced according
to Eq. (5). Since N = const. during the transition k — [ it can
easily be verified from Eq. (17) that the probability II, is again
given by Eq. (6) as in the canonical ensemble. In the second
step the number of atoms is changed according to AN = N, —
Ny = =1.If AN = +1 an atom enters the simulation cell at a
randomly chosen position r;; = &V from a virtual reservoir of
matter; if AN = —1 an already existing atom is removed to
that reservoir. The change in N is accepted {or rejected) on the
basis of the modified Metropolis criterion

1 | re >0
I, = { (18)
Sil f = explrs);

f1—<—0,

where the argument of the pseudo-Boltzmann factor is given by

rs =B —InN,— Bd/(r;) (19a)
for addition (AN = +1) and by
ro=—B+InN,+ 8®(r;;) (19b)
for removal (AN = —1). The constant B is given by
B = Bup — In(A¥V) (20)

in the notation of Adams [25]. If r. = 0 addition or removal
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of an atom is accepted with the desired probability if
exp(r.) > £ where £is a pseudo-random number distributed
uniformly on the interval [0, 1]; if exp(r-) < & the addition
(removal) is finally rejected.

VI1.2. Efficient Addition and Remouval of Atoms

The ratio of diffusive and addition {removal) steps is largely
arbitrary. The only requirement is an equal probability of addi-
tion and removal attempts [26]. Thus, one can draw a random
number ¢ and try to remove an existing atom if £ << 0.5 and
add one if ¢ > 0.5. If an atom is to be removed the choice of
a particular one is arbitrary, In fact, one may select the one
involved in the immediately preceding diffusive step. This will
be demonstrated below in Section 111.3. Depending on its out-
come @, in Eq. (19b) can be expressed as

O, = &, = (1) + Dor,) + D
unsuccessful displacement

(bk = an = q)](rl',n) + (DZ(ri,m) - FZ(ri.m) ' d + (I)c;

(21a)

successful displacement (21b)
where @, is a correction due to the finite potential cutoff r, and
the change in density Ap = —1/V associated with the removal
attempt. Explicit analytical expressions for @, and different
cutoff solids are given in the Appendix of [27]. Using Egs.
(21) is convenient because the terms on the right hand side are
already known from the attempted preceding displacement of
i in the Taylor-expansicn formalism except for

N,

Drin) = D, 0(rym) 2le)
i#=f

However, only N, interactions have to be considered in addition
to the already available information @,, F, and d. Equation
{21c) can be evaluated alongside with &, and F, if the decision
whether an addition or a removal attempl is to follow the dis-
placement step is made before atom i is moved. Contrary to
standard practice [26] where N| + N, interactions of a randomly
selected atom (regardless of the one just moved) have to be
computed (in addition to Ny(i) distances r; if a neighbor list
1s employed) only N, such terms are required here, From Table
VI it follows that No/(N, + N, -+ Ny) = (.3 under the present
conditions (see Table I). Thus, roughly the same CPU-time
reduction can be expected for the removal step if Egs. (21)
are used.

Unfortunately, no similar scheme is possible if an atom is
added because it has not been in the simulation cell, yet. Thus,
its ““history’” prior to the addition attempt is unknown. As a
consequence &, O,, F;, and d are not available from a preced-
ing diffusive step involving that atom. However, in a dense
fluid a considerable amount of computer time can be saved by
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taking into consideration the ultimate failure of most addition
attempts {ca. 90-98% depending on thermodynamic condi-
tions). Due to a lack of sufficient space addition attempts will
frequently put the new atom ¢ “‘on top”” of an already existing
one j. The resulting @, will then be positive and may be so
large that it outweighs B and Iln N, in Eq. (19a) to such an
extent that even the comparison of exp(r.)(r; <€ 0) with £ will
not effect the final decision to reject the addition attempt.

®, is computed in a loop running over r;. Thus, one may
encounter r;’s early in the loop for which the corresponding
@(r;)’s are too large so that none of the remaining, yet to be
evaluated terms p(r;) can eventually reduce &; enough. Thus,
B — In N, cannot compete with — 3@, which renders an addition
attempt likely to be successful. In this case it would be wasteful
(and presumably is in most MC programs) to continue the
summation of @{r;) until the loop concludes, On the contrary,
it would be much more economic if a decision could be made
at each step in the loop whether or not an addition attempt is
eventually doomed to fail (and, therefore, whether or not the
loop should continue). Such a decision is, in fact, possible on
the basis of the gccumulated configurational energy

v
OINY=D plr)+ D N =1,..N, (223
IE

where N' is the index of the innermost loop in an actual MC
program. Based upon ®(N') a quantity

ro(N')=B—InN,— B[®N")— e(N' — N)j;
(22b)
N =1,.,N

can be defined which in the limit N = N’ (i.e., when the loop
concludes) goes over to r, in Eq. (19a). The fourth lerm on
the r.h.s. of Eq. (22b) assumes the remaining (yet to be com-
puted) r’s to equal r,, which would be energetically most
favourable because ¢{ry,) = —&. Any addition attempt is cer-
tain to fail eventually if at any step in the loop r,(N') falls
short of some threshold. The threshold value is largely arbitrary
but should be small enough to ensure that an addition attempt
is very unlikely even if the Mefropolis criterion {(comparison
between exp(r,) and £) would be applied. For all practical
purposes —20 is found to be a reasonably small value for the
threshold. Thus, in the actual MC program accumulation of
&, (N") is terminated before the full loop concludes if r (N'} <
—20 which is the case in, say roughly 60—80% of all attempted
additions in a dense fluid depending on its thermodynamic state.

M.3. Resuits

To demonstrate the correctness of the MC procedure in the
grand canonical ensemble described in the previous section,
simulations are performed for an inhomogeneous fluid. The
system consists of a molecularly thin monatomic film between
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two plane-parallel molecularly smooth rigid surfaces (i.e.,
walls) separated by a distance s, = [z — z®| where z and
7@ represent positions of lower and upper wall respectively.
As before (see Section I1.3) interactions between film atoms
are described by the Lennard—-Jones potential given in Eq. (16).
However, since the walls represent an external field expressions
for the configurational energy have to be modified according to

D=2 o(ry) + g () = O + Py (232)
7] =

where the film-wall potential is given by [27]

2 10 4 )
¥z = 2med, |:§ (E(TOZZ_{A'_)) - (Z‘*—_U;(k—}) ] {23b)

In Eq. (23b) d, = N,o%/s* = 0.7827 (s* = 7.9925, side length
of the sguare simulation cell in the x, y plane) is the surface
density and z; is the z-coordinate of a film atom. & and & are
taken identical for film-film and film—wall interactions for
which the values given in Section 113 are employed.
Quantities computed are the mean configurational energy

U= U+ Urw (24a)

where the first term on the r.h.s. is identical with U/ in Eq.
(15a) and

2 N
= <2 > 90z > (24b)

k=1 i=1

Because of the cylindrical symmetry of the film (on account
of the presence of the walls) a cutoff cylinder instead of a
sphere is used here. Thus, U, {see Eq. (153a)) is of a different
form which can be found in the Appendix of [27] (Eq. (A6)).
In addition, the normal component Py of the pressure tensor P
is computed. Py may be written as

Pn=Pymrt Pnrw (25)

The film—film contribution is computed by analogy with Eq.
(15b) as

-1 N

BPyge B <Nc - Zijdq:> BPY.

Bl _ B S il
(N} ;f'mz-rlrud”fj P

where {N) is the average number of film atoms and p = (N)/
V. An explicit expression for P}, is given in the Appendix of
[28]. Similarly,

(26a)
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(26h)

BPxrw B <i EN: - 2®) dy* >

The MC calculations proceed in a slightly different manner
here because a cutoff cylinder of infinite height centered on z;
is employed. Thus, in the Taylor-expansion method r; (see
Section 11.2) is taken to be the radius of a cylindrical shell in
the x, y plane. r,, on the other hand, is still the radius of a
sphere inscribed into the cylinder where Ar* = rf — ¥ = 0.5
as before in the bulk phase (see Table 1). The correction @, in
Eqgs. (21a), (21b}, and (22b) is also computed for the cutoff
cylinder and an explicit expression is given in Eq. (A7) of [27].

The results in Table VII indicate excellent agreement be-
tween the present method and results obtained earlier [27] by
the conventional method. As before for the bulk phase the
deviations between various contributions to the mean configu-
rational energy are smaller than 1%. Particularly noteworthy
is the good agreement between the normal pressure contribu-
tions Pygr and Pypw from both methods. This is significant
because Py changes sign and varies more strongly with the
thermodynamic state compared with U, However, agreement
is somewhat less satisfactory for states where Py is a sum of
comparably large numbers of opposite sign (state 5). The same
comments made earlier in Section I1.3 concerning pattial can-
celiation in sums of comparably large positive and negative
numbers apply here t00 if Pyg = —Pyrw. Thus, on the whole
Table V1I illustrates the correctness of the modified grand ca-
nonical ensemble method described in Section II1.2.

This may be further demonstrated by considering distribu-
tions of configurational energy P(®P) and the number of atoms
P (N} determined by the present method and the one described
in [25, 27], which is distinct from the former in that the conven-
tional method (see Section 1I.1) s applied to the diffusive
substep and that atoms subjected to removal attempts are picked
at random. By analogy with the canonical ensemble (see Section
I1.3) P(d) and P(N) reflect the distribution of microstates in
configuration space according to f{(r™#; u, V, T) (see Eq. (17)).
As can be seen in Fig. 2 P(®) and P(N) obtained by the two
grand canonical ensemble MC implementations are in excellent
agreement with each other. Similar agreement is found for the
other thermodynamic state. The adequacy of the more efficient
scheme is thus further substantiated.

However, one might suspect that a subtle unphysical correla-
tion is introduced by the present algorithm if the atom subject
to a prior displacement attempt is subjected immediately to a
removal attempt, even though the outcome of the removal at-
tempt is not directly determined by the outcome of the displace-
ment attempt. Clearly, if the atom to be removed is picked at
random [25, 27] there will be a certain (average) number of
MC steps between removal and the preceding displacement
attempt. Thus, the environment of an atom selected later for
removal may have changed in the meantime because of success-
ful displacement, removal or addition of neighboring atoms,
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TABLE VII

Grand Canonical Ensemble Monte Carlo Simutations of an Inhomogeneous Fluid (See Text)

] —U/INY ~ Ubel (W) PE Pher Plew

s} —p*  This work Ref. [27]*  This work Ref, [27]  This work Ref. [27]*  This work Ref, {27]  This work Ref. [27]  This work Ref. [27] /107%s
215 0.23 . 504 50 2141 2.109 5076 5.074 —0.759 ~0.76 0.419 0.42 —1.178 —1.18 1.320
2.20 9.26 50.3 50 2,103 2,101 4.860 4.860 -1.106 -LI1 0.425 0.42 —-1,531 —1.53 1.325
230 930 50.6 51 2128 2117 4.390 4,408 -1 -1.20 0.459 0.46 —1.570 ~1.65 1.344
240 934 51.8 52 2,149 2.145 3967 3,974 —0.714 —0.73 0.536 0.54 —1.250 —1.26 1.381
250 939 54.4 54 2.209 2.196 3.598 3.600 0.179 0.20 0716 0.73 —0.551 —0.53 1,457
260 942 62.2 62 2.454 2421 3.265 3.278 2.145 2.04 1.287 1.26 0.858 0.79 1.657
270 946 T9.8 %0 3.113 31106 3.0t7 3.002 5.650 570 2.459 2.48 3.191 322 2105
280 949 915 92 3.548 3.555 3.003 3.004 5.164 5.25 2.382 242 2.782 2.84 2416
.00 9.56 98.1 99 3.685 3.703 2914 2.920 1.286 1.30 1.097 1.1 0.189 0.19 2.618

Note. Thermodynamic states are specified in terms of g% = 7.9925%: 5%, p* and T* = 1.00. Results obtained by the method described in Section [1.2 are compared with these

obtained by the conventional method (see text) in [27). For a definition of reduced units of energies (columns 2, 4, 5) and pressures {columns 6, 7, 8) see Table 1. The CPU-times
per Monte Carlo step (column 9) are measured on a personal computer (COMPAQ ProLinea 4/50) consisting of a 50 MHz INTEL-486 processor with mathecmatical coprocessor.

“ Rounded to the nearest integer.

® Because of a coding error in an eartier MC program results presented in Table VII of [27] are too small by a factor of 2. This error did, however, not affect the Markov chain

generation in [271

whereas this is prevented by the scheme proposed in Section
IIE.2. To test the latter for spuricus correlations between dis-
placement and removal, one may compute the fraction of atoms
removed successfully after they had been moved successfully
(x,) and unsuccessfully (x, = 1 — x,) in a preceding displace-
ment attempt (Note that the fraction of atoms involved in an
unsuccessful removal attempt following successful displace-
ment equals the acceptance rate of the diffusive substep). These
numbers are compared with those obtained within the scheme
where atoms are picked at random [25, 27]. If atoms are picked
at random any deviation of x, from 0.5 reflects physically sig-
nificant correlations between removal and displacement at-
tempts whereas significant deviations of x, between the scheme
proposed in Section III.2 and the one employed in [23, 27]
would cast doubt on the validity of the former. For the two
representative states considered in Fig. 2 x, = 0.462 (s¥ =
220, u* = —9.26), 0.44] (s¥ = 295, pu* = —9.50) are
obtained by the scheme proposed in Section IIL.2 while the
corresponding figures obtained by picking atoms at random are
0.475 and 0.439 respectively which are still close to 0.5 and
deviate only insignificantly. Perhaps more striking are the val-
ues x, = 0.695 (present scheme), 0.701 (random selection, [25,
271 determined for the thermodynamic state u* = —16.90,
s¥ = 4.5, s* = 7.9925, T* = 1.60 which suggests that, de-
pending on the state, physically significant correlations between
displacement and removal indeed exist, regardless of methodol-
ogy. The latter state exhibits considerable density fluctuations,
as reflected by an acceptance rate of about 11% for removal
or addition of atoms, which is guite high. This should perhaps
not be surprising, however, because the thermodynamic state
of the bulk fluid at the same temperature and chemical potential
is sufficiently close to the critical point; one would therefore
expect the confined fluid to exhibit features of the near-critical
regime of thermodynamic states also [29]. In any case, the
agreement between the values of x; reported renders unlikely

the possibility of spurious correlations introduced by the grand
canonical ensemble MC scheme proposed in Section IH.2. This
notion is corroborated by the plots shown in Fig. 2.

Its usefulness is underlined by the CPU-times per MC step
listed in column 9 of Table VIL. As it turns cut between 1.5
and 3.0h of CPU-time on a modern personal computer are
required to study a complex system which is still of great
relevance to actual research involving molecularly thin confined
films [19]. These times are cbtained by using a neighbor list
as before (see Section II). In addition a technique described by
Allen and Tildesley (p. 129 in [5]) is employed to handle the
varying length of the neighbor list on account of addition and
removal of atoms.

IV. DISCUSSION AND CONCLUSIONS

In this article an efficient new recipe for Monte Carlo simula-
tions is presented. In these simulations a sequence of configura-
tions may be generated by the Metropolis algorithm the heart
of which are random displacements of atoms or molecules.
Displacements are accepted (or rejected) on the basis of the
associated change in configurational energy. Efficiency of the
new method is achieved by treating interactions between atoms
at different levels of computational sophistication. For a short-
range potential three levels associated with different (spatial)
zones can be defined. Interactions between a reference atom i
and its N, neighbors j'"(i) located in a primary zone immedi-
ately surrounding i are explicitly evaluated before and after
i is displaced. The change in configurational energy due to
interactions between i and N, neighbors j®(i) belonging to the
adjacent secondary zone are included by a Taylor expansion
of the relevant contribution to the configurational energy in
terms of the small displacement d of i, Thus, these N, contribu-
tions are computed only once before i is moved from its old
position r; tor; + d. Interactions between { and neighbors j®(7)
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(a) The distribution of the film—film contribution to the configurational energy P () as a function of the deviation of ® from its ensemble

average (@p) (see Eg. (23a)) at s* = 11.3031, s* = 2.20, T* = 100, u* = —9.26 (see Tables I, VID). The curves are obtained by Taylor-expansion Monte
Carlo in the grand canonical ensemble (see Section IT12) () ((®%) = —2.103) and the implementation described in [25, 27) () ({(®F) = —2.101} in which
atoms are subjected to removal attempts randomly rather than sequentially (see text). (b) The same as (a) but s* = 7.9925, 5% = 295, T* = 100, u* =
—~9.50; Taylor-expansion Monte Carlo (O) (&%) = —3.701), implementation described in {25, 271 (@) ({¥F) = —3.695}. Note the much broader distribution
due to less severe confinement of the film. (¢) The distribution of the number of atoms P{¥) accomedated by the film. The curves shown pertain to the
thermodynamic state defined in (b). The corresponding curves for the thermodynamic state in (a) fall essentially on top of the present ones and are therefore

not shown.

located in a tertiary zone surrounding the secondary one are
completely ignored because for sufficiently small |d| the associ-
ated change in configurational energy is negligible. Measure-
ments reveal that, depending on density, standard textbook
implementations of the Metropolis algorithm require between
20-40% more CPU-time than the Taylor-expansion method.

The Taylor-expansion method is similar in spirit to the multi-
ple time-step method in molecular dynamics (MD) simulations
[30] of fluids with short-range interactions. An analogous divi-
sion into primary and secondary zones is made and only forces
between atoms belonging to the primary zone are calculated at
every time-step. Secondary forces are updated only in intervals
of a certain number of MD steps. In the meantime the change of
secondary forces is estimated by employing a Taylor-expansion
ansatz. This expansion includes up to third-order derivatives
of the secondary forces and is found to provide a reasonably
accurate description of their time evolution [30].

The multiple time-step MD technigue differs in two signifi-
cant aspects from the Taylor-expansion MC method presented
here. First, forces in multiple time-step MD are expanded in
time whereas in Taylor-expansion MC the energy field acting

on an atom is expanded in terms of that atom’s displacement
d. Second, the multiple time-step technique yields much larger
savings of computer time (typically a factor of 35 [30]) com-
pared with the Taylor-expansion method (see Table V). This
seems to be caused by at least two effects. In the multiple time-
step method time derivatives of the forces can be expressed in
terms of spatial derivatives of the interaction potential and
time derivatives of atomic positions both of which are readily
available in MD [30]. For example, the first-order derivative
of the potential (i.e., the force) must be calculated anyway and
higher-order derivatives can be obtained from it by simple
multiplications. Forces are also required for the N, atoms of
the secondary zone in Taylor-expansion MC. However, forces
are not part of the conventional Metropolis algorithm. The
relative effort in computing a vector quantity like F; may 1o
some extent counterbalance the gain from avoiding a double
calculation of the scalar ® up to r;. More importantly, however,
computation of the force matrix in MD involves arithmetic
operations of the order of N? whereas in MC the computation
of & requires operations of N. Thus, if the explicit computation
of a large fraction of interactions can be neglected in MD for
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a number of time-steps the net gain has to be expected to grow
quadratically, too. In Taylor-expansion MC, on the other hand,
CPU-time savings are expected to grow only linearly and are
predominantly achieved during the displacement step, that is
they are effective only in 50% of the total number of MC steps
(counting separately the computation of the configurational
energy before and after atom i is displaced).

Nevertheless, Taylor-expansion MC is shown to be an effi-
cient and useful new method in the simulation of classical
condensed phases. This is exemplified in the article by em-
ploying the Taylor-expansion method in grand canonical en-
semble MC simulations of inhomogeneous films, It is then
possible to run a simulation on a modern personal computer
within only a few hours even for systems which have previously
been simulated exclusively on a vector computer. However,
this will only be true if sufficiently ‘‘simple’ model systems
are considered. Fortunately, the Taylor-expansion technigue
is not restricted to scalar processors but has recently been
incorporated into a fully vectorized MC program optimized for
a CRAY YMP/832 [19]. The measured CPU-times on the
CRAY are smaller by roughly a factor of 10-20 compared with
the ones reported in Table V. Parallelization of the method
should also be straightforward. It should also be noted that the
Taylor-expansion method can be applied to MC simulations in
virtually any statistical-physical ensemble because a diffusive
step (as in the canonical ensemble) is always involved.

Finally, the Taylor-expansion method should also be appli-
cable to molecular fluids where ¢ will be implicitly or
explicitly angle-dependent to take into account the orientation
dependence of the intermolecular interactions. Application to
site—-site potentials (which are implicitly angle-dependent)
should be straightforward and no modifications of the method
as described here are expected. For explicitly angle-dependent
models dependence of © on, say polar and azimuthal angles
may require more (and, perhaps, higher-order) terms in the
Taylor expansion. In this case usefulness of the method
remains to be shown.
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